

LUBROREFRIGERANTI

LUBROREFRIGERANTI METALWX

I Lubrorefrigeranti METALWX sono lubrorefrigeranti emulsionabili esenti da boro e biocidi donatori di formaldeide. Sono formulazioni progettate per offrire lubrificazione e raffreddamento durante le operazioni di lavorazione nel rispetto delle normative ambientali e di sicurezza.

VANTAGGI D'IMPIEGO

I lubrorefrigeranti **METALWX** sono progettati per offrire una soluzione completa, unendo elevate performance di lavorazione con considerazioni ambientali e di gestione dei rifiuti.

- Contribuiscono a mantenere elevate prestazioni per utensili e macchine, migliorando l'efficienza della lavorazione.
- Sono adatti per una varietà di operazioni di lavorazione, inclusa l'asportazione gravosa e la superfinitura su diversi tipi di materiali.
- La possibilità di riciclo su vasche singole o centralizzate garantisce che i fluidi possano essere gestiti in modo sostenibile, riducendo gli sprechi e contribuendo a una gestione responsabile dei rifiuti.
- La presenza di proprietà antiossidanti è un vantaggio importante, in quanto contribuisce a proteggere sia i pezzi lavorati che le macchine utensili dalla corrosione e dall'ossidazione.
- La capacità di riciclo e la possibile riduzione dei rifiuti consentono di ridurre i costi di smaltimento, promuovendo una gestione sostenibile.

CARATTERISTICHE

Le peculiarità indicate per questa gamma di fluidi mostrano un impegno significativo verso la sostenibilità ambientale e la sicurezza degli operatori. Ecco una breve analisi delle caratteristiche menzionate.

- 1. La gamma si impegna a offrire elevate prestazioni in termini di lubrificazione e raffreddamento, essenziali per una produzione efficiente.
- 2. La presenza di un elevato potere anticorrosivo suggerisce che questi fluidi sono progettati per proteggere le superfici metalliche dalla corrosione, aumentando la durata degli utensili e delle macchine.
- 3. La mancanza di boro e biocidi donatori di formaldeide indica un impegno a evitare sostanze potenzialmente dannose, rispettando al contempo le normative ambientali e di sicurezza.
- 4. La bassa formazione di schiuma è vantaggiosa perché contribuisce a mantenere l'efficienza del sistema di lubrificazione e facilita le operazioni di produzione.
- 5. La resistenza alla degradazione microbiologica suggerisce che i fluidi sono progettati per resistere alla crescita di batteri e altri microrganismi, preservando la qualità del fluido nel tempo.
- 6. La buona tollerabilità cutanea è un aspetto importante per la sicurezza degli operatori, riducendo il rischio di irritazioni o reazioni allergiche.
- 7. La stabilità con acque di media durezza indica la capacità dei fluidi di mantenere le loro prestazioni anche in presenza di acque con una certa quantità di minerali.

		410 CL	410	411		420		416		840		820		525	616		620	
CHIMICA	Indice rifrattometrico	1	1	1,1		2		1,6		2		1		2,5	1,6		2	
	Densità a 20°C g/cm³	< 1	< 1	< 1		<1		1		1		<1		>1	< 1		< 1	
	Additivazione EP	Media	Media	-		-		Bassa		Bassa		-		-	Bassa		Bassa	
	Potere untuosante	Alta	Alta	Bassa		Bassa		Media		Bassa		Media		-	Media		Bassa	
	Natura della base	Minerale	Minerale	Minerale		Minerale		Minerale		Minerale		Minerale		Sintetica	Vegetale		Vegetale	
	Cloro free	-	Free	Free		Free		Free		Free		Free		Free	Free		Free	
	Acqua consigliata °F	10 - 35	10 - 35	10 - 40		10 - 40		10 - 35		10 - 40		5 - 20		0 - 15	10 - 35		10 - 40	
	Aspetto emulsione	Lattescente	Lattescente	Opalescente		Opalescente		Traslucida		Traslucida		Lattescente		Trasparente	Trasl	Traslucida		Traslucida
LAVORAZIONE MATERIALI	A -> AsportazioneR -> Rettifica	А	А	А	R	А	R	А	R	А	R	А	R	R	А	R	А	R
	Acciai	4% 🌑	4% 🌑	4% 🌑	2% 🌑	5% 🌑	2% &	4% 🌑	2% &	4% 🌑	2% 🌑	6% G	-	3% 🌑	5% 🌑	3% 🌑	6% 🌑	2% 🌑
	Acciai legati e inox	5% 🌑	5% 🌑	6% K	3% 🌑	6% G	3% 🦣	6% G	-	5% &	3% S	-	-	3% 🌑	6% 🌑	3% 🦣	6% G	3% 🦣
	Leghe alluminio	4% 🌑	4% 🌑	5% G	2% 🌑	-	3% 🌑	4% 🌑	2% 🌑	5% 🌑	3% S	8% &	-	3% 🌑	5%	3% 🌑	5%	3% 🦣
	Leghe gialle	4% S	4% S	-	-	-	-	-	-	-	-	3% 🌑	3% 🌑	-	-	-	-	-
	Titanio	8% 🌑	8% 🌑	-	4% S	-	4% S	-	-	-	-	-	-	3% S	8% 🌑	3% &	8% G	3% 🦣
	Ghisa	-	-	4% 🌑	3% 🌑	4% 🌑	3% 🌑	-	-	4% &	3% &	-	-	3% 🌑	-	-	-	-

CONSIGLIATO

